AA OPTO-ELECTRONIC proposes the most complete range of Acousto-Optic devices covering wavelengths from 180 nm up to $11 \mu \mathrm{~m}$ including all associated Radio Frequency drivers and power amplifiers.

- Modulators - Pulses pickers
- Polychromatic modulators
- Fixed \& variable frequency shifters
- Deflectors - AOTF
- Q-Switches - Cavity Dumpers
- Fiber pigtailed devices
- Power Amplifiers
- Fixed and variable frequency sources
- Custom developments

AA OPTO-ELECTRONIC
Components and Innovations for demanding applications...
AA was founded in 1979, under the name «Automates et Automatismes». It became a limited company in 1988 under the new name of AA Sa, specialising in acousto-optic components and their associated RF drivers. AA is a world leader in the manufacturing of quality Acousto-optic and radio frequency devices. Close collaboration with universities and research institutes, provided invaluable knowledge and experience in the design and manufacturing processes of Acousto-optic devices and radio-frequency sources. Continuous R\&D keeps pace with advances in laser and electronic technology to ensure AA continues to offer state-of-the-arts products. AA offers its customers solutions from prototype design to large volume manufacturing thanks to its internal resources and In-house capabilities. Our Headquarter is located in ORSAY, near Paris. This is also our optical manufacturing center. All RF drivers are manufactured in our St Avertin plant, located 200 kms south of Paris.

Challenging applications...
In the race of solving problems, computers play a major role and 'how fast?' becomes the key question. Since several decades already, we have been using supercomputers in many industries: from finance to cybersecurity to scientific applications and beyond, but the ' 0 ' and ' 1 ', commonly known as bits have shown their limits already in terms of speed. To answer time sensitive questions, we now talk about Qbits. Indeed, Quantum computing, being much faster, has gained momentum during the last years and many countries have invested massively in this sector.
Lasers are involved in Quantum computing and so do Acousto optic devices. AA is quite proud to bring its contribution to this revolutionizing technology. By providing its wide range of high performance deflectors and also modulators or fiber pigtailed frequency shifters for this application, AA is certainly helping to move forward in this technology

- Diffraction Efficiency
$\frac{I_{1}}{I_{0}}=\sin ^{2}\left(\frac{\pi}{2} \sqrt{\frac{P}{P_{0}}}\right) \quad$ with $P_{0}=\frac{\lambda_{c}^{2}}{2 M_{2}} \frac{H}{L}$
- Rise time
$T_{r}=\frac{\Phi}{V} \times 066$
- AM Bandwidth (Analog -3dB)
$F_{-3 d B} \approx \frac{0.48}{T_{r}}$
$■$
Scan Angle
$\Delta \Theta=\frac{\lambda \Delta F}{V}$
- Static Resolution

$$
N=\frac{\pi}{4} \Delta F \frac{e}{l}
$$

- Dynamic Resolution
$N_{d}=N\left(1-\frac{T_{a}}{T}\right)+1$
. 1 : Laser Intensity in 1 st order

2. . Laser Intensity in 0 th orde
3. P: RF power
4. $P_{0}:$ RF power at max efficien
5. λ :wavelength
6. M_{2} : Figure of Merite
7. H: Active Aperture Height
8. L: Interaction Length
9. L:Interaction Length
10. $\Phi:$ Beam diameter $\left(1 / e^{2}\right)$
11. \quad : Beam diameter $\left(1 / \mathrm{e}^{2}\right)$
12. $\Delta F:$ RF Frequency range
13. $\Delta \theta:$ Scan angle
14. V: Acoustic Velocity
15. Ta: Access Time
16. T:Sweeping time

Acousto-Optic Pulse Pickers

A pulse picker is an electrically controlled optical switch used to extract single pulses from a fast pulse train.
Short and Ultrashort pulses are in most cases generated by a mode-locked laser in the form of a pulse train with a pulse repetition rate of the order of $10 \mathrm{MHz}-$ few GHz . For various reasons, it is often necessary to pick certain pulses from such a pulse train, i.e., to transmit only certain pulses and block all the others. This can be done with a pulse picker, which is essentially an electrically controlled optical gate.
Fiber Pigtailed Pulse Pickers

Model	Wavelength (nm)	Fibre Type	Carrier Frequency (MHz)	Rise Time (ns)	Max Repetition rate with Duty cycle (MHz)	Max Laser Power (W)	Losses nom (dB)
MT250-IR6-FIO	$1000-1100$	PM, SM	250	6	80	0.5	4
MT200-IR10-FIO	$1000-1100$	PM, SM	200	10	48	1	3.5
MT80-IIR30-FIO	$1300-1600$	PM, SM	80	30	16	1	3
MT160-IIR10-FIO	$1300-1600$	PM, SM	160	10	48	1	4
MT80-FIR40-FIO	$1900-2100$	PM, SM	80	40	12	5	4
MT200-NIR10-FIO	$780-820$	PM, SM	200	10	48	1	3.5

(

High Damage Threshold Pulse Pickers

Model	Wavelength nm	Aperture mmxmm	Polarisation	Beam diameter mm	Rise Time ns	Max Repetition rate with Duty cycle < 1/100 MHz	Separation angle (0-1)	Efficiency \%
MCQ80-A2-L1064	1000-1100	2×2	Linear	0.5-1.5	55-165	10	14.8 @1064nm	75-85
MQ80-A0.7-L1064	1000-1100	0.7×1	Linear	0.3-0.5	33-55	15	14.3 @1064nm	75-85
MCQ40-A1,5-L1064	1000-1100	1.5×1.5	Linear	0.5-1.2	57-138	10	26.8 @1064nm	75-85

Pulse Pickers Associated RF drivers

These drivers based on quartz oscillators, produce a fixed RF frequency signal. Pulse is controlled thanks to a TTL signal while amplitude is controlled with an analog signal. Standard MODA driver can also be used in combination with pulse pickers.

Model	Carrier Frequency	Max RF Power	Rise Time	Controls	Exctinction Ratio	Power Supply	Class
MODAXX- $2 / 4 \mathrm{~W}$ PPK	$80,110,160,200$, 250 MHz	$2 / 4 \mathrm{~W} / 50 \Omega$	$3-8 \mathrm{~ns}$	$0-5 \mathrm{~V} / 1 \mathrm{~K} \Omega$ for AM $+\mathrm{TTL} / 1 \mathrm{~K} 1 \mathrm{~K} \Omega$ for pulse	45 dB 60 dB on request	24 VDC or $110 / 230 \mathrm{VAC}$	AB

PPK: Synchro driver for fast pulse pickers

These drivers have been designed in order to offer the highest possible performance in high speed Pulse Picking applications. They include a programmable built-in signal generator synchronized on the laser repetition rate.
These systems are perfectly adapted to fibre pigtailed pulse pickers, but is equally suitable for use with AA's range of free space devices.

Features

- High stability system with Pulse to Pulse Stability contribution $<0.5 \%$ (version PPKAc) Dedicated to 80 MHz repetition rate lasers (PPKA) and lower (PPKS)
- Input reference clock from Laser
- With Built-in High accuracy signal generator, picking ratio down to $1 / 16000000$

Including Digital delay and window gate adjustments
Consecutive pulse extinction ratio (CPER) optimisation
Bluetooth Remote control, USB, RS32 communication for set up
RoHS compliant

Model	Laser Repetition Rate	Carrier Frequency	Delay range/ step	Pulse Width range	AO Models / Fiber Pigtailed
PPKAc250-B-xx-32-75.85*	$75-85 \mathrm{MHz}$	Adapted to RR	32ns (0.25ns)	32ns (0.25ns)	MT250-IR6-Fio-PM-lc
PPKS250-B-xx-32	$30-75 \mathrm{MHz}$	250 MHz	32ns (0.25ns)	32ns (0.25ns)	MT250-R6--Fio-PM-lc
PPKS200-B-xx-32	$30-55 \mathrm{MHz}$	200 MHz	32ns (0.25ns)	32ns (0.25ns)	MT200-R6--Fio-PM-Ic
PPKS200-B-xx-128	$5-55 \mathrm{MHz}$	200 MHz	128ns (1ns)	128ns (1ns)	MT200-IR10-Fio-PM-lc
PPKS200-B-xx-640	$1-50 \mathrm{MHz}$	200 MHz	$640 n 5$ (5ns)	$640 n 5$ (5ns)	MT200-IR10-Fio-PM-IC
PPKS80-B-xx-640	$1-20 \mathrm{MHz}$	80 MHz	640 ns (5ns)	640ns (5ns)	MT80-\|IR30-Fio-PM-Ľ2

Model	Laser Repetition rate	Carrier frequency	Delay Range**	Pulse width range	AO Models Free space
PPKAc250-B-xx-32-75.85*	$75-85 \mathrm{MHz}$	Adapted to RR	$32 \mathrm{~ns}(0.25 \mathrm{~ns})$	$32 \mathrm{~ns}(0.25 \mathrm{~ns})$	MT250-A0.12-1064
PPKS250-B-xx-32	$0,1-75 \mathrm{MHz}$	250 MHz	$32 \mathrm{~ns}(0.25 \mathrm{~ns})$	$32 \mathrm{~ns}(0.25 \mathrm{~ns})$	MT250-A0.12-1064
PPKS200-B-xx-32	$0,1-60 \mathrm{MHz}$	200 MHz	$32 \mathrm{~ns}(0.25 \mathrm{~ns})$	$32 \mathrm{~ns}(0.25 \mathrm{~ns})$	MT200-A0.2-1064
PPKS200-B-xx-128	$0,1-55 \mathrm{MHz}$	200 MHz	$128 \mathrm{~ns}(1 \mathrm{~ns})$	$128 \mathrm{~ns}(1 \mathrm{~ns})$	MT200-A0.4-1064
PPKS80-B-xx-640	$0,1-20 \mathrm{MHz}$	80 MHz	$640 \mathrm{~ns}(5 \mathrm{~ns})$	$640 \mathrm{~ns}(5 \mathrm{~ns})$	MT80-A1-1064 MT80-AO.

$x x=30: 1$ watt version, $x x=34: 2.5$ watts version, $x x=36: 4$ watts version, $x x=42: 15$ watts version

* With Synchronized carrier frequency (High Stability). Other carrier frequencies on request.
**Main delay range obtained by laser beam translation inside pulse picker

Acousto-Optic Modulators

and Fixed Frequency Shifters

Acousto-optic modulators are used to vary and control laser beam intensity in first order. The rise time of the modulator is simply deduced by the necessary time for the acoustic wave to travel through the laser beam. For highest speeds the laser beam wil be focused down, forming a beam waist as it passes through the modulator.

The first order beam of a modulator is frequency shifted by the amount of the RF carrier frequency : it acts like as fixed frequency shifter.

Model	Material	Wavelength nm	Aperture mm^{2}	$\begin{gathered} \text { Freq (Shift) } \\ \text { MHz } \end{gathered}$	Polar	Rise Time* ns	Modul BW MHz (AM)	Efficiency \%
MQ200-A1,5-244.266-B	Fused silica	244-266	1,5×2	200	Linear	60	8	85
MQ200-A1,5-266.300	Fused silica	266-300	1,5×2	200	Linear	60	8	85
MQ180-A0, 2-266.300	Fused silica	266-300	$0,2 \times 1$	180	Linear	10	48	85
MQ180-A0,2-UV	Fused silica	325-442	$0,2 \times 1$	180	Linear	10	48	80
MQ110-A3-UV	Fused silica	325-442	3×3	110	Linear	50	10	90
MQ240-A0,2-UV	Fused silica	325-442	$0,2 \times 1$	240	Linear	6	80	70
MQ180-A0,25-VIS	Fused silica	440-650	$0,25 \times 1$	180	Linear	10	48	70
MCQ110-A2-VIS	Quartz	488-633	2×2	110	Linear	50	8	85
MT350-A0,12-VIS	TeO2	450-700	$0,12 \times 1$	350	Linear	5	96	80
MT250-A0,5-VIS	TeO2	450-700	$0,5 \times 2$	250	Linear	6	80	85
MT200-A0,5-VIS	TeO2	450-700	0,5×2	200	Linear	8	60	85
MT110-A1-VIS	TeO2	450-700	1×2	110	Linear	15	32	85
MT110-A1,5-VIS	TeO2	450-700	1,5×2	110	Linear	50	9	85
MT80-A1-VIS	TeO2	450-700	1×2	80	Linear	23	21	85
MT80-A1,5-VIS	TeO2	450-700	1,5×2	80	Linear	50	9	85
MTS110-A3-VIS	TeO2	458-633	3×3	110	Linear	1000	0,4	85
MTS40-A2-532.700	TeO2	532-700	2×2	40	Linear	1000	0,4	85
MT1 10-A1,5-IR-Hk (Ti:sa)	TeO2	690-1064	1,5×2	110	Linear	50	9	80
MT110-A1, 5-680.1300-Hk	TeO2	680-1300	1,5×2	110	Linear	50	9	80
MT350-A0,2-800	TeO2	700-950 (1100)	0,2×1	350	Linear	5	96	80
MT250-A0,5-800	TeO2	700-950 (1100)	$0,2 \times 2$	250	Linear	6	80	80
MT200-A0,5-800	TeO2	700-950 (1100)	0,5×2	200	Linear	8	60	85
MT110-A1-IR	TeO2	700-950 (1100)	1×2	110	Linear	15	32	85
MT110-A1,5-IR	TeO2	700-950 (1100)	1,5×2	110	Linear	50	9	85
MT80-A1-IR	TeO2	700-950 (1100)	1×2	80	Linear	23	21	85
MT80-A1,5-IR	TeO2	700-950 (1100)	$1,5 \times 2$	80	Linear	50	9	85
MT200-A0,5-1064	TeO2	980-1100	$0,5 \times 2$	200	Linear	8	60	80
MT200-A0,2-1064	TeO2	980-1100	$0,2 \times 1$	200	Linear	8	60	80

*Rise time is beam diameter dependent

| Model | Material | Wavelength
 nm | Aperture
 mm^{2} | Freq (Shift)
 MHz | Polar | Rise Time
 ns | Modul BW
 $\mathrm{MHz}(\mathrm{AM})$ | Efficiency
 $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MT110-A1-1064 | TeO2 | $980-1100$ | 1×2 | 110 | Linear | 15 | 32 | 85 |
| MT80-A1-1064 | TeO2 | $980-1100$ | 1×2 | 80 | Linear | 23 | 21 | 85 |
| MT80-A1,5-1064 | TeO2 | $1000-1100$ | $1,5 \times 2$ | 80 | Linear | 50 | 9 | 85 |
| MTS80-A3-1064AC | TeO2 | $1030-1080$ | 3×3 | 80 | Linear | 500 | 1 | 85 |
| MQ80-A0.7-L1030.1080 | SiO2 | $1030-1080$ | 0.7×1 | 80 | Linear | 120 | 14 | 85 |
| MCQ40-A1.5-L1064 | Quartz | $1030-1080$ | 1.5×1.5 | 40 | Linear | 50 | 9 | 85 |
| MQ40-A3-L1064-W | SiO2 | $1030-1080$ | 3×3 | 40 | Linear | 120 | 4 | 85 |
| MCQ40-A2.5-1064 | Quartz | $1030-1080$ | 2.5×2.5 | 40 | Linear | 180 | 2,5 | 85 |
| MT80-A0.7-1300.1600 | TeO2 | $1300-1600$ | 0.7×1 | 80 | Linear | 50 | 9 | 80 |
| MTS40-A3-1550 | TeO2 | $1500-1600$ | 3×3 | 40 | Linear | 500 | 1 | 85 |
| MGAS40-A1 | Doped Glass | $1300-1600$ | 1×2 | 40 | Random | 50 | 10 | 85 |
| MGAS80-A1 | Doped Glass | $1300-1600$ | 1×2 | 80 | Random | 50 | 10 | 85 |
| MGAS110-A1 | Doped Glass | $1300-1600$ | 1×2 | 110 | Random | 25 | 20 | 85 |
| MT80-A0.4-2000 | TeO2 | $1900-2100$ | 0.4×1 | 80 | Linear | 25 | 20 | 65 |
| MG40-A6-9300 | germanium | 9300 | 6×10 | 40 | Linear | 120 | 4 | 75 |
| MG40-A8-9300 | germanium | 9300 | 8×10 | 40 | Linear | 120 | 4 | 75 |
| MG40-A6-10600 | germanium | 10600 | 6×10 | 40 | Linear | 120 | 4 | 75 |
| MG40-A8-10600 | germanium | 10600 | 8×10 | 40 | Linear | 120 | 4 | 75 |

Fixed Frequency drivers

These drivers based on quartz oscillators, produce a fixed RF frequency signal. Drivers can be provided at any frequency from 10 MHz to 3 GHz .
The RF output can be externally modulated with a digital (TTL) and Analog signals (DUAL AM control). The rise time varies from 1 ns to 50 ns depending on the fixed frequency and RF power. Usually the driver is coupled internally to a power amplifier; if the output power required is very high then the amplifier will be provided separately, offering RF powers up to 500 WCW .

MODAXX	TMODXX (Ultra compact)
Fixed Frequencies Adapted at factory to AO device Standard: $35,40,68,80,110,160,180,200,250,350 \mathrm{MHz}$ (Other on request)	Fixed Frequencies Any frequency in [20-160]MHz Accuracy 1 KHz
Modulation Input (AM) Analog 0-1V / 50 Ohms or 0-5 V/ 50 Ohms or Digital TTL Dual AM controls Analog + Digital	Modulation Input Analog 0-5V / 1 KOhms + TTL / 1 KOhms Dual AM controls
Extinction ratio Standard 45dB - High Extinction ratio on request	High Extinction ratio 85-100dB digital/ > 45dB analog
Power Supply 24VDC or Laboratory 110-230 VAC	Power Supply 12VDC
Output RF Power $1,2,4,10,20,50,70,100$ Watts	Output RF Power Up to 2,5 Watts

xed Frequencies ny frequency in [20-160]MHz

Analog 0-5V / 1KOhms + TTL/ 1 KOhm
Analog 0 -5V / KO

85-100dB digital >45 dB analog

Up to 2,5 Watts

Acousto-Optic Fiber Pigtailed

Modulators, Shifters, Pulse Pickers, Q-switches

ICF Compact AOM, Pulse Pickers for Industrial applications

Industrial Compact design

 frequency shifters or Q-switches. Our standard versions are proposed with a single mode ber with polarization maintaining. However on request, we can offer different types of fibers or connectors.These devices are dedicated for telecommunication applications, as well as for printing, microscopy, Q-switching or any other application.
VSF, Versatile Scientific Fibre range of devices

Any wavelength from 400 up to 2100 nm Any frequency from 35 up to 425 MHz
Any type of fibre PM, SM, LMA...
Any type of jacket
Any fibre connectors

Model	Wavelength nm	Fibre Type	Configuration	Freq (Shift) MHz	Rise Time ns	Max Laser Power W	Losses nom dB
MT180-G430-Fio-MM	532	Multimode	2 ports*	180	430	0.5	3
MT200-BG(9-18)-Fio	488-532	SM, PM	2 ports*	200	9, 18	0.05	3
MT80-G60-Fio	488-532	SM,PM	2 ports*	80	60	0.5	3
MT200-R(9-18)-Fio	630-700	SM, PM	2 ports*	200	9, 18	0.1	3
MQ180-G9-Fio	488-532	PM	2 ports*	180	9	0.1	3
MT80-NIR60-Fio	780-870	SM, PM	2 ports*	80	60	0.5,5	2
MT1 10-NIR20-FIO	780-870	SM, PM	2 ports*	110	20	0.5,5	2.5
MT200-NIR10-Fio	780-870	SM, PM	2 ports*	200	10	0.5	3.5
MT80-IR60-Fio	1000-1100	SM, PM	2 ports*	80	60	0.5,5	2
MT110-IR20-Fio	1000-1100	SM, PM	2 ports*	110	20	0.5,5	2.5
MT200-IR10-Fio	1000-1100	SM, PM	2 ports*	200	10	1	3
MT250-IR6-Fio	1000-1100	SM, PM	2 ports*	250	6	0.5	3.5
MT80-IIR30-Fio	1300, 1550	SM, PM	2 ports**	80	30	0.5,5	2.5
MT110-IIR20-Fio	1300, 1550	SM, PM	2 ports*	110	20	0.5,5	3.5
MT160-IIR10-Fio	1300, 1550	SM, PM	2 ports**	160	10	1	4
MA40-IIR120-Fio	1300, 1550	SM, PM	2 ports**	40	120	0.5	2
MT80-FIR40-2000-Fio	1900-2100	SM, PM	2 ports	80	40	0.5	6

Associated RF drivers: MODAxx or DRFAxx (VCO based) / DDSPAxx + Power Amplifier

- Pulses pickers $1064 \mathrm{~nm}, 6 \mathrm{~ns}, 250 \mathrm{MHz}$

Pulse pickers 1064 nm, 10ns, 200 MHz

- Fast AO Modulators
- Frequency Shifters 1064 nm

Q-Switches 1064 nm
AO Modulator $1550 \mathrm{~nm}, 30 \mathrm{~ns}$

- Frequency shifter, 80 MHz

Model	Wavelength (nm)	Fibre Type	Carrier Frequency (MHz)	Rise Time (ns)	Max Repetition rate with Duty cycle (MHz)	Max Laser Power (W)	Losses nom (dB)
MT250-IR6-FIO	$1000-1100$	PM, SM	250	6	80	0.5	4
MT200-IR10-FIO	$1000-1100$	PM, SM	200	10	48	1	3.5
MT160-IIR10-FIO	$1300-1600$	PM, SM	160	10	48	1	4
MT200--NIR10-FIO	$780-820$	PM, SM	200	10	48	1	3.5
MT80-IIR30-FIO	$1300-1600$	PM, SM	80	30	16	1	3
MA40-IIR55-FIO	$1300-1600$	PM, SM	40	55	9	0.5	2.5

3 Fio: 3 ports fiber versions

Any wavelength from 400 up to 2100 nm Any frequency from 35 up to 425 MHz Any type of fibre PM, SM, LMA...

Any type of jacket
Any fibre connectors

| Model | Wavelength
 (nm) | Fibre
 Type | Carrier
 Frequency
 (MHz) | Rise Time
 (ns) | Max Repetition rate
 with Duty cycle
 (MHz) | Max Laser
 Power (W) | Losses
 nom (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MT110-IR25-3Fio | $1000-1100$ | SM, PM | 3 ports * | 110 | 25 | $0.5,5$ | 2.5 |
| MT110-IRR25-3FIO | $1300-1550$ | SM, PM | 3 ports * | 110 | 25 | $0.5,5$ | 3 |
| MT80-IIR40-3FIO | $1300-1550$ | SM, PM | 3 ports * | 80 | 40 | 10 | 3 |

Acousto-Optic Deflectors

and Variable Frequency Shifters

A Bragg configuration gives a single first order output beam, whose intensity is directly linked to the power of RF control signal, and whose angle is directly linked to the RF frequency. By varying the frequency, the output laser beam angle is modified. A deflector is used to scan a laser beam over a range of angles, or to control with accuracy the output angle of the laser beam.

High Resolution	Material	Wavelength nm	Aperture mmxmm	Freq (Shift) MHz	Polarisation	Resolution T.DF	Deflexion angle range mrd	$\begin{gathered} \text { Efficiency } \\ \% \end{gathered}$
DTSX-250	TeO2	405-1600*	4,5×4,5	$f(\lambda)$	Linear	300@633nm	48@633nm	>70
DTSX-400	TeO2	405-1600*	7,5×7,5	$f(\lambda)$	Linear	$500 @ 633 \mathrm{~nm}$	48@633nm	> 70
DTSXY-250	2 Axis TeO2	405-1600*	4,5×4,5	$f(\lambda)$	Linear	$300 \times 300 @ 633 \mathrm{~nm}$	41×41 @ 532 nm	> 50
DTSXY-400	2 Axis Te02	405-1600*	7,5×7,5	$f(\lambda)$	Linear	$500 \times 500 @ 633 \mathrm{~nm}$	41×41 @ 532 nm	> 50
DT230-B120A0,5-UV	TeO2	400-450	$0,5 \times 17,5$	230+/-60	Linear	500	11,4@400nm	>50
DT230-B120A0,5-VIS	TeO2	450-670	$0,5 \times 17,5$	230+/-60	Linear	500	$15 @ 532 \mathrm{~nm}$	> 50
Low resolution	Material	Wavelength nm	Aperture mmxmm	Freq (Shift) MHz	Polarisation	Resolution $T \Delta F$	Deflexion angle range mrd	$\begin{gathered} \text { Efficiency } \\ \% \end{gathered}$
MQ110-B30A1-UV	Fused Silica	325-425	1×2	110+/-15	Linear	10	1.8@355nm	> 60
MT200-B50A0,5-400.442	TeO2	400-442	$0,5 \times 2$	200+/-25	Linear/random	23	5,4@458nm	> 80
MT200-B100A0,5-VIS	TeO2	450-700	0,5×2	200+/-50	Linear/random	47	12,6@532nm	> $70 @ 633 \mathrm{~nm}$
MT110-B50A1,5-VIS	TeO2	450-700	1,5×2	110+/-25	Linear/random	23	6,3@532nm	>65@633nm
MT80-B30A1,5-VIS	TeO2	450-700	1,5×2	80+/-15	Linear/random	14	3,8@532nm	> 65
MT200-B100A0,5-800	TeO2	750-950	0,5×2	200+/-50	Linear/random	47	18,6@785nm	> 60
MT200-B40A1-800	TeO2	750-950	1×2	200+/-20	Linear/random	19	7,4@800nm	> $70 @ 785 \mathrm{~nm}$
MT250-B100A0,5-800	TeO2	750-950	$0,5 \times 2$	250+/-50	Linear/random	47	19@800nm	>60
MT200-B100A0,5-800	TeO2	750-950	0,5×2	200+/-50	Linear/random	47	19@800nm	>60@785nm
MT1 10-B50A1,5-IR	TeO2	700-1100	1,5×2	110+/-25	Linear/random	23	9,5@800nm	>60@785nm
MT80-B30A1,5-1R	TeO2	700-1100	1,5×2	$80+/-15$	Linear/random	14	5,7@800nm	> $70 @ 765 \mathrm{~nm}$
MT200-B100A0,5-1064	TeO2	980-1100	0,4×2	200+/-50	Linear/random	47	25,3@1064nm	>35
MT110-B30A1,5-1064	TeO2	960-1100	1,5×2	110+/-15	Linear/random	14	7,6@1064nm	> 60
MT80-B30A1,5-1064	TeO2	980-1100	1,5×2	$80+/-15$	Linear/random	14	7,6@1064nm	> 60
MT80-B30A0.7-1300.1600	TeO2	1300-1600	0.7×1	80+/-15	Linear/random	14	9.3 @1300nm	>65

Multi Outputs/Multi channels Synthesizers (Based on DDS)

Model	Frequency Range	Number of outputs	Output Power	Number of channels	Power Supply
MPDS1C2X	in $20-275 \mathrm{MHz}$	2	$1-20$ watts	1	24 VDC
MPDS2C2X	in $20-200 \mathrm{MHz}$	2	$1-20$ watts	2	24 VDC
MPDS2C4X	in $20-200 \mathrm{MHz}$	4	$1-20$ watts	2	24 VDC
MPDS2C8X	in $20-200 \mathrm{MHz}$	8	$1-20$ watts	2	24 VDC

VCO drivers

 (Voltage Controlled Oscillator)These drivers are suitable for general purpose applications (raster scan, or random access...). The VCO can be modulated (amplitude) from an external signal.

The frequency is externally controlled by an analog signal. An external medium power amplifier will be required to generate the RF power levels required by the AO device.

Frequency range
$10-400 \mathrm{MHz}$
Frequency control
15,23 or 31 bits $(1$ bit E/D)
Frequency Step
$15 \mathrm{KHz}, 59 \mathrm{~Hz}, 0.23 \mathrm{~Hz}$
Modulation Input
$0-5 \mathrm{~V} / 50$ Ohms (8 bits on request)
Access Time
$40,64,80$ ns
Power Supply
24 VDC or $111-230 \mathrm{VAC}$
Output RF Power
Nominal 0 dBm (to be matched with AA power amplifier)
$-->$ On request CSB Controller for PC, designed to drive 1 or
2 DDSPA through SSB port

DDS drivers

To get a high resolution driver with fast switching time, AA has de signed direct digital synthesizers based on monolithic IC circuits. 3 models have already been released, and different units can be designed to specific requirements.
These models offer high frequency accuracy and stability and extremely fast switching times, generally of a few tens of nanoseconds. The DAC circuits have been designed with utmost care to obtain clean RF signals, with minimum spurious noise

OPTION: PHASE LOCKED DDS (Common Ref)

Variable Frequency RF drivers

RF Power amplifiers

AA's acousto-optic amplifiers are linear with large bandwidth and medium power. The models below cover a variety of bandwidths from 1 MHz to 3 GHz . Output powers up to 80 W are available. Each amplifier is supplied with its heat sink and all are stable and reliable under all conditions.For High power amplifiers, AA proposes models up to 500 W CW.

Model	Frequency Range	Gain nom	Output Power	Flatness	Power Supply
AMPB-B-30-10.500	$10-500 \mathrm{MHz}$	35 dB	1 watt	$+/-1 \mathrm{~dB}$	24 VDC
AMPB-B-34-10.500	$10-500 \mathrm{MHz}$	39 dB	2 watts	$+/-1 \mathrm{~dB}$	24 VDC
AMPB-B-36-10.500	$10-500 \mathrm{MHz}$	42 dB	4 watts	$+/-1 \mathrm{~dB}$	24 VDC
AMPA-B-40	$50-150 \mathrm{MHz}$	43 dB	10 watts	$+/-1 \mathrm{~dB}$	24 VDC
AMPA-B-43	$60-105,110-150$ $150-210 \mathrm{MHz}$	46 dB	20 watts	$+/-0.75 \mathrm{~dB}$	24 VDC
AMPA-B-47	$35-45 \mathrm{MHz}$	48 dB	50 watts	$+/-0.75 \mathrm{~dB}$	24 VDC

The AOTFnC is a special acousto-optic tunable filter which uses the aniso tropic interaction inside a tellurium dioxide crystal to control independent ly or simultaneously different lines from an incoming UV or VISIBLE laser light (White laser, Ar+, Kr+, HeNe, DPSS, Dye...),
Up to 8 distinct lines can be mixed and separately modulated in order to generate different colorimetric patterns.
The specific crystal cut of the AOTF.nC produces good diffraction efficiency (> 90\%), narrow resolution ($1-2 \mathrm{~nm}$), a low cross-talk between lines, and high extinction ratio.

The large separation angle between 0 and 1 st orders, as well as the excellent output chromatic colinearity (<0.2 to $<0.3 \mathrm{mrd}$) make this AOTF a powerful tool for free space or fiber pigtailed applications.
Its associated thermal stabilisation maintains stable diffraction efficiency and reduces dramatically beam drift with single mode fiber pigtailing. This is a major advantage for high sensitivity applications.

AOTFnC*	VIS	VIS Low Res	Low -VIS	IR
Number of channels / Lines	8	4	8	4
Optical wavelength range	$450-700 \mathrm{~nm}$	$450-700 \mathrm{~nm}$	$400-650 \mathrm{~nm}$	700-1100 nm
Transmission	> 95%	> 95%	> 90%	> 95\%
Input Light polarization	Linear orthogonal	Linear orthogonal	Linear orthogonal	Linear parallel
Output Light polarization	Linear parallel	Linear parallel	Linear parallel	Linear orthogonal
Active aperture	$3 \times 3 \mathrm{~mm}^{2}$	$3 \times 3 \mathrm{~mm}^{2}$	$3 \times 3 \mathrm{~mm}^{2}$	$2.5 \times 2.5 \mathrm{~mm}^{2}$
Spectral resolution (FWHM)	nom 1-2 nm	nom 4.9 nm	nom 1-4 nm	nom $3.5-9 \mathrm{~nm}$
Separation angle (orders 0-1)	>4,6 degrees	>4,6 degrees	> 4 degrees	>4degrees
Chromatic colinearity (order 1)	< $0,2 \mathrm{mrd}$	< $0,2 \mathrm{mrd}$	< $0,3 \mathrm{mrd}$	< 0.1 mrd
Temperature stabilization	TN	TN	TN	TN
AO Efficiency	>= 90% /line	>= 90% /line	>= 90% /line	>= $85 \% /$ line
Rise time	$1010 \mathrm{~ns} / \mathrm{mm}$	$1010 \mathrm{~ns} / \mathrm{mm}$	$1000 \mathrm{~ns} / \mathrm{mm}$	1010 ns/mm
Max accepted RF power	<1 Wall lines	<1 Wall lines	nom 1 W all lines	nom 1 W all lines

MPDSnC - MULTI PURPOSES DIGITAL SYNTHESIZERS MPDSnCmX - MULTI OUTPUTS / MULTI CHANNELS DIGITAL SYNTHESIZERS

Product Overview

These drivers based on Direct Digital Synthesizers (DDS), produce multiple fixed stable and accurate RF frequency signals for polychromatic modulators or modulators. Their design with "on the edge" technology offers unique performance in term of accuracy, speed and stability (single/mul ti-line) thanks to their internal temperature correction and high linearit design. design.
optic devices, optic devices, with reduced power consumption (AA "COLD DESIGN"). In case of Powers higher than 4 Watts, the association with an external power amplifier will be necessary.
or simultaneously modulated (BLANIIUally modulated (MOD IN low crosstalk version with super (BLANKING signal). AA focussed on a ultra The adjustments of the driver (Fr ast and fall time.
remote control, USB or through RS 232 cy \& Power) can be done with噱 232 communication to allow user flexibility in power control or frequency scanning

Features

Based on DDS (Direct Digital Synthesizer)

- 1 to 8 channels
- Full USB/RS232 control - Analog/Digital external control
- Low Noise
- Bluetooth Remote control
- Embedded automatic Control
- Compact size - Low heat dissipation / High reliability RoHS Compliant - CE Compliant

Applications

Suitable to control simultaneously multi-line lasers
Suitable to drive simultaneously multi-channel devices

- Biomedical, marking, material processing, printing.

MPDSnCXX
1 to 8
Frequency rang
in [20-200] MHz adapted to AO device at factory
xternal Modulation Input per channel Analog $0-10 \mathrm{~V} / 10 \mathrm{KOhms} \mathrm{or} 0-5 \mathrm{~V} / 10 \mathrm{KOhms}$

External Blanking
nalog 0-10V/10 KOhms or O-5 V/ 10 KOhms (option TTU)
Extinction ratio
nom 120 dB
艮 120 dB
SB, RS232, RC04
USB, RS232, RCO
Power Supply
4VDC or 110-230 VAC Rack 19 inch - Current <1A
Output RF Power
Total 1, 2, 4 Watts
Total $1,2,4$ Watts

Acousto-Optic AOTF

Tunable Filters

An AOTF is a solid-state, electronically tunable bandpass filter, which uses the acousto-optic interaction inside an anisotropic medium. These filters can be used with multi-lines sources (mixed gas lasers, Laser diodes...) or with broadband light sources (Xenon, Halogen lamps....). They allow to select and transmit a single wavelength from the incoming light.

| Model | Source | Wavelength
 nm | Aperture
 $\mathrm{mm} \mathrm{\times mm}$ | Field of
 View
 degrees | Tuning
 Time
 $\mu \mathrm{s}$ | Polarization | Resolution
 $\mathrm{nm}-3 \mathrm{~dB}$ | Efficiency
 $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AOTFnC-UV | Laser | $350-430$ | 2×2 | 1 | <2 | Linear | $1-2$ | 85 |
| AOTFnC-400.650 | Laser | $400-650$ | 3×3 | 1 | <4 | Linear | $1-4$ | 85 |
| AOTFnC-VIS | Laser | $450-700$ | 3×3 | 1 | <4 | Linear | $1-2$ | 85 |
| AOTF3-LR | Laser/Lamp | $400-700$ | 6×6 | 4 | <9 | Linear/Random | $5-25$ | 85 |
| AOTF3-MR | Lamp | $400-700$ | 4×4 | 4 | <6 | Linear/Random | $3,5-17$ | 85 |
| AOTF3-HR | Lamp | $400-700$ | $3,5 \times 3,5$ | 3 | <5 | Linear/Random | $2,5-12$ | 85 |
| AOTF-A2-500.850 | laser/Lamp | $500-850$ | 3×3 | 4 | <4 | Linear | $5-15$ | 85 |
| AOTFnC-IR | Laser/Lamp | $700-1100$ | 2.5×2.5 | 4 | <3 | Linear | $3-9$ | 85 |
| AOTF10 | Lamp | $1250-2500$ | 3×3 | 20 | $<4,5$ | Linear/Random | $2-10$ | $70-30$ |

Associated RF drivers: DRFAxx (VCO based) or DDSPAxx + Power Amplifier /MPDSnC

RF ELECTRONICS For optical and RF applications

Model	Frequency Range	Gain nom	Output Power	Flatness	Power Supply
AMPB-B-30-10.900	$10-900 \mathrm{MHz}$	35 dB	1 watt	$+/-2 \mathrm{~dB}$	24 VDC
AMPB-B-34-10.900	$10-900 \mathrm{MHz}$	39 dB	2 watts	$+/-2 \mathrm{~dB}$	24 VDC
AMPB-B-36-10.900	$10-900 \mathrm{MHz}$	42 dB	4 watts	$+/-2 \mathrm{~dB}$	24 VDC

Model	Frequency Range	Number of outputs	Output Power	Number of channels	Power Supply
MPDS1C	in $20-275 \mathrm{MHz}$	1	$1-20$ watts	1	24 VDC
MPDS2C2X	in $20-275 \mathrm{MHz}$	2	$1-20$ watts	2	24 VDC
MPDS2C4X	in $20-275 \mathrm{MHz}$	4	$1-20$ watts	2	24 VDC
MPDS2C8X	in $20-275 \mathrm{MHz}$	8	$1-20$ watts	2	24 VDC

| Model | External
 Reference | Frequency
 Range | Output
 Power | Number of
 Outputs | Power
 Supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MPDSEx1C | in 500 MHz | in $20-500 \mathrm{MHz}$ | $1-20$ watts | 1 | 24 VDC |
| MPDSEx2CnX | 5 MHz | in $20-40 \mathrm{MHz}$ | $1-20$ watts | $1-4$ | 24 VDC |
| MPDSEx2CnX | 15 MHz | in $20-120 \mathrm{MHz}$ | $1-20$ watts | $1-4$ | 24 VDC |
| MPDSEx2CnX | 50 MHz | in $20-400 \mathrm{MHz}$ | $1-20$ watts | $1-4$ | 24 VDC |
| MPDSEx2CnX | 100 MHz | in $20-500 \mathrm{MHz}$ | $1-20$ watts | $1-4$ | 24 VDC |
| MPDSEx2CnX | 500 MHz | in $20-200 \mathrm{MHz}$ | $1-20$ watts | $1-4$ | 24 VDC |

Acousto-Optic Q-Switches \&Associated RF drivers

Air cooled and Water cooled
A propose a complete line of Acousto-optic \mathbf{Q}-switches and associated RF drivers, for a wide ange of applications. They are manufactured from the highest quality materials, with opti mized hard coatings for high damage threshold and long term operation. All AA Q-switches mized hard coatings for high damage threshold and long termiperation. Ali AA Q-switches mechanical technology which reduces stress during operation.

Air-cooled Q-Qwitches: Compact solutions for short cavities, or low gain cavities

Model	Material	Polarization	Carrier Freq. MHz	Aperture $\mathrm{mm} \times \mathrm{mm}$	Losses $\%$	Optional Length mm
QCQ40-A1.5-L1064*	QUARTZ	Linear	40.68	1.5×2	>80	32
QCQ80-A1.2-L1064*	QUARTZ	Linear	80	1.2×1.22	>80	32
QCQ80-A2-L1064*	QUARTZ	Linear	80	2×2	>80	32

*Products available only on special request

Q-Switches RF drivers

Reliable and Stable drivers for Industry..

QMODPOAxx [10-20 Watts]- Low heat dissipation
Frequency $24,27.12,40.68,68,80,110 \mathrm{MHz}$
Power Supply 24 VDC, Class A (15 VDC on request)

Rise/Fall Time typ<20 ns @80MHz
Max RF power 20 Watts
Extinction Ratio 45 dB nom
Heat Exchange Conduction through baseplate + Fan + Heatsink

Acousto-Optic RF drivers Custom solutions

AA OPTO-ELECTRONIC

18, rue Nicolas Appert 91898 Orsay cedex

France

Tel. : +33 (0)1 76915012
Fax : +33 (0)1 76915031
sales@a-a.fr
www.aaoptoelectronic.com

